资源类型

期刊论文 292

会议视频 5

年份

2024 1

2023 33

2022 30

2021 25

2020 24

2019 15

2018 17

2017 15

2016 15

2015 16

2014 12

2013 16

2012 8

2011 10

2010 12

2009 9

2008 10

2007 13

2006 1

2003 1

展开 ︾

关键词

分子对接 2

分子成像 2

分子设计 2

分子诊断 2

合成 2

定点突变 2

绿色化工 2

21世纪海上丝绸之路 1

Heterodera glycines 1

ATP荧光检测 1

FLT3抑制剂 1

MERS-CoV 1

SNP基因分型芯片 1

ZN-1阻尼橡胶材料 1

circRNA 1

β-内酰胺/β-内酰胺酶抑制剂 1

丙型肝炎病毒核心蛋白 1

丝孢堆黑粉菌 1

临床可行性 1

展开 ︾

检索范围:

排序: 展示方式:

Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies

null

《医学前沿(英文)》 2015年 第9卷 第2期   页码 134-138 doi: 10.1007/s11684-015-0396-9

摘要:

Drug resistance is a major factor that limits the efficacy of targeted cancer therapies. In this review, we discuss the main known mechanisms of resistance to receptor tyrosine kinase inhibitors, which are the most prevalent class of targeted therapeutic agent in current clinical use. Here we focus on bypass track resistance, which involves the activation of alternate signaling molecules by tumor cells to bypass inhibition and maintain signaling output, and consider the problems of signaling pathway redundancy and how the activation of different receptor tyrosine kinases translates into intracellular signal transduction in different cancer types. This information is presented in the context of research strategies for the discovery of new targets for pharmacological intervention, with the goal of overcoming resistance in order to improve patient outcomes.

关键词: targeted therapy     drug resistance     receptor tyrosine kinases     cancer    

Molecular mechanisms of fatty liver in obesity

null

《医学前沿(英文)》 2015年 第9卷 第3期   页码 275-287 doi: 10.1007/s11684-015-0410-2

摘要:

Nonalcoholic fatty liver disease (NAFLD) covers a spectrum of liver disorders ranging from simple steatosis to advanced pathologies, including nonalcoholic steatohepatitis and cirrhosis. NAFLD significantly contributes to morbidity and mortality in developed societies. Insulin resistance associated with central obesity is the major cause of hepatic steatosis, which is characterized by excessive accumulation of triglyceride-rich lipid droplets in the liver. Accumulating evidence supports that dysregulation of adipose lipolysis and liver de novo lipogenesis (DNL) plays a key role in driving hepatic steatosis. In this work, we reviewed the molecular mechanisms responsible for enhanced adipose lipolysis and increased hepatic DNL that lead to hepatic lipid accumulation in the context of obesity. Delineation of these mechanisms holds promise for developing novel avenues against NAFLD.

关键词: nonalcoholic fatty liver disease     insulin resistance     obesity    

Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganeseoxide batteries from reactive force field (ReaxFF) based molecular dynamics

Sahithya REDDIVARI, Christian LASTOSKIE, Ruofei WU, Junliang ZHANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 365-373 doi: 10.1007/s11708-017-0500-8

摘要: Lithium manganese oxide (LiMn O ) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other cathode materials. However, there are well-documented problems with capacity fade of lithium ion batteries containing LiMn O . Experimental observations indicate that the manganese content of the electrolyte increases as an electrochemical cell containing LiMn O ages, suggesting that active material loss by dissolution of divalent manganese from the LiMn O surface is the primary reason for reduced cell life in LiMn O batteries. To improve the retention of manganese in the active material, it is key to understand the reactions that occur at the cathode surface. Although a thin layer of electrolyte decomposition products is known to form at the cathode surface, the speciation and reaction mechanisms of Mn in this interface layer are not yet well understood. To bridge this knowledge gap, reactive force field (ReaxFF) based molecular dynamics was applied to investigate the reactions occurring at the LiMn O cathode surface and the mechanisms that lead to manganese dissolution. The ReaxFFMD simulations reveal that the cathode-electrolyte interface layer is composed of oxidation products of electrolyte solvent molecules including aldehydes, esters, alcohols, polycarbonates, and organic radicals. The oxidation reaction pathways for the electrolyte solvent molecules involve the formation of surface hydroxyl species that react with exposed manganese atoms on the cathode surface. The presence of hydrogen fluoride (HF) induces formation of inorganic metal fluorides and surface hydroxyl species. Reaction products predicted by ReaxFF-based MD are in agreement with experimentally identified cathode-electrolyte interface compounds. An overall cathode-electrolyte interface reaction scheme is proposed based on the molecular simulation results.

关键词: lithium manganese oxide batteries     reactive force field (ReaxFF)     cathode-electrolyte interface layer     molecular dynamics    

Molecular mechanisms of leukemia-associated protein degradation

Ying-Li WU, Guo-Qiang CHEN, Hu-Chen ZHOU,

《医学前沿(英文)》 2010年 第4卷 第4期   页码 363-370 doi: 10.1007/s11684-010-0210-7

摘要: Chemical biology, using small molecules as probes to study the cellular signaling network, has developed rapidly in recent years. The interaction between chemistry and biology not only provides new insight into the understanding of cellular activities, but also generates new lead compounds for the treatment of diseases. Transcription factors and kinases such as retinoic acid receptor-alpha (RARα), acute myeloid leukemia 1 (AML1), CAAT/enhancer-binding protein α (C/EBPα), c-myc, and c-abl play important roles in the differentiation of hematopoietic stem/progenitor cells. Abnormalities in these proteins may cause the dysregulation of hematopoiesis and even the occurrence of leukemia. Ubiquitin-mediated protein degradation represents a critical mechanism in regulating the cellular levels and functions of these proteins. Thus, targeting protein degradation has been emerging as an important strategy to conquer malignant diseases. In this review, we will summarize the recent advances in the understanding of the roles of protein degradation in leukemia, with an emphasis on the mechanisms revealed by small molecules.

关键词: protein degradation     leukemia     chemical biology     transcription factors     oncoprotein    

Molecular mechanisms and therapeutic strategies of vulnerable atherosclerotic plaques

Wen-Qiang CHEN MD, Yun ZHANG MD, PhD, FACC,

《医学前沿(英文)》 2010年 第4卷 第1期   页码 36-42 doi: 10.1007/s11684-010-0020-y

摘要: Vulnerable atherosclerotic plaque rupture leading to thrombosis is the major cause of acute coronary syndrome (ACS). Studies on the pathophysiologic mechanism of both ACS and plaque stabilizing treatment are driving the development of animal models of vulnerable plaque. In our laboratory, we established animal models of plaque rupture and thrombosis in rabbits and mice that are similar to human plaque rupture. Potential mechanisms involved in plaque vulnerability were studied from the inflammation-immunity, proliferation-apoptosis, oxidative stress and biomechanics aspects. Imaging markers and biomarkers were used to detect vulnerable plaques, including high frequency duplex ultrasound, intravascular ultrasound (IVUS), intravascular ultrasound elastography, magnetic resonance imaging (MRI) and inflammatory markers. Effective gene and drug strategies to treat vulnerable plaques were explored.

关键词: vulnerable plaque     animal models     mechani-sm     detection     treatment    

Influences and mechanisms of nanofullerene on the horizontal transfer of plasmid-encoded antibiotic resistance

Qingkun Ji, Caihong Zhang, Dan Li

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1287-0

摘要: Abstract • Sub-inhibitory levels of nC60 promote conjugative transfer of ARGs. • nC60 can induce ROS generation, oxidative stress and SOS response. • nC60 can increase cell membrane permeability and alter gene expression. • Results provide evidence of nC60 promoting antibiotic resistance dissemination. The spread and development of antibiotic resistance globally have led to severe public health problems. It has been shown that some non-antibiotic substances can also promote the diffusion and spread of antibiotic resistance genes (ARGs). Nanofullerene (nC60) is a type of nanomaterial widely used around the world, and some studies have discovered both the biological toxicity and environmental toxicity of nC60. In this study, cellular and molecular biology techniques were employed to investigate the influences of nC60 at sub-minimum inhibitory concentrations (sub-MICs) on the conjugation of ARGs between the E. coli strains. Compared with the control group, nC60 significantly increased the conjugation rates of ARGs by 1.32‒10.82 folds within the concentration range of 7.03‒1800 mg/L. This study further explored the mechanism of this phenomenon, finding that sub-MICs of nC60 could induce the production of reactive oxygen species (ROS), trigger SOS-response and oxidative stress, affect the expression of outer membrane proteins (OMPs) genes, increase membrane permeability, and thus promote the occurrence of conjugation. This research enriches our understanding of the environmental toxicity of nC60, raises our risk awareness toward nC60, and may promote the more rational employment of nC60 materials.

关键词: Nanofullerene     Sub-minimum inhibitory concentrations     Antibiotic resistance genes     Conjugation     Molecular biological techniques    

Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms

null

《医学前沿(英文)》 2011年 第5卷 第1期   页码 33-39 doi: 10.1007/s11684-011-0114-1

摘要:

Adult stem cells hold great promise for wound healing and tissue regeneration. Mesenchymal stem cells (MSCs), for example, have been shown to play a role in tissue repair. Research has shown that endogenous bone marrow MSCs or exogenously delivered MSCs migrate to the sites of injury and participate in the repair process. The precise mechanisms underlying migration of MSCs into the injured tissue are still not fully understood, although multiple signaling pathways and molecules were reported, including both chemoattractive factors and endogenous electric fields at wounds. This review will briefly summarize the regulatory facors and signaling transduction pathways involved in migration of MSCs. A better understanding of the molecular mechanisms involved in the migration of MSCs will help us to develop new stem cell-based therapeutic strategies in regenerative medicine.

关键词: mesenchymal stem cells     migration     molecular mechanisms     signaling pathway    

纳米多孔介质中的流体流动

Weiyao Zhu,Bin Pan,Zhen Chen,Wengang Bu,Qipeng Ma,Kai Liu,Ming Yue

《工程(英文)》 2024年 第32卷 第1期   页码 139-152 doi: 10.1016/j.eng.2023.05.014

摘要:

Fluid flow at nanoscale is closely related to many areas in nature and technology, e.g., unconventional hydrocarbon recovery, carbon dioxide geo-storage, underground hydrocarbon storage, fuel cells, ocean desalination and biomedicine. At nanoscale, interfacial forces dominate over bulk forces, and nonlinear effects are important, which significantly deviate from conventional theory. During the past decades, a series of experiments, theory and simulations have been performed to investigate fluid flow at nanoscale, which has advanced our fundamental knowledge of this topic. However, a critical review is still lacking, which has seriously limited the basic understanding of this area. Therefore herein, we systematically review experimental, theoretical and simulation works on single- and multi- phases fluid flow at nanoscale. We also clearly point out the current research gaps and future outlook. These insights will promote the significant development of nonlinear flow physics at nanoscale and will provide crucial guidance on the relevant areas.

关键词: Transport in nanoporous media     Multi-phase fluid dynamics     Nonlinear flow mechanisms     Nonlinear flow conservation equations     Interfacial forces     Molecular dynamics simulation    

FOOD SYSTEMS TRANSFORMATION: CONCEPTS, MECHANISMS AND PRACTICES

《农业科学与工程前沿(英文)》 2023年 第10卷 第1期   页码 1-3 doi: 10.15302/J-FASE-2023491

摘要: FOOD SYSTEMS TRANSFORMATION: CONCEPTS, MECHANISMS AND PRACTICES

关键词: TRANSFORMATION     SYSTEMS     FOOD     CONCEPTS     MECHANISMS    

Gripping mechanisms in current wood harvesting machines

D. GOUBET, J. C. FAUROUX, G. GOGU

《机械工程前沿(英文)》 2013年 第8卷 第1期   页码 42-61 doi: 10.1007/s11465-013-0358-3

摘要:

This paper focuses on the structural synthesis of gripping mechanisms used in the mechanization of the harvesting process. The importance of the gripping function in current devices like harvesting heads is underlined. This function is performed with several typical mechanisms which are listed and described in this article. This study distinguishes two kinds of planar gripping mechanisms mainly used in opening and closing the rollers: five concentric and two lateral ones. Both kinds have advantages and drawbacks. So a third kind of hybrid mechanism has been designed in order to orientate the axis of the rollers during gripping motion in order to combine concentric and lateral gripping advantages. Two planar and one spatial existing mechanisms are described. The last part of this paper presents a structural synthesis of such a spatial parallel mechanism by using the structural parameters and the general formulae established by the third author. Nine kinematic diagrams of spatial parallel mechanisms are provided.

关键词: structural synthesis     parallel mechanisms     gripping mechanisms     wood harvesting     harvesting head    

Recent development on innovation design of reconfigurable mechanisms in China

Wuxiang ZHANG, Shengnan LU, Xilun DING

《机械工程前沿(英文)》 2019年 第14卷 第1期   页码 15-20 doi: 10.1007/s11465-018-0517-7

摘要: Reconfigurable mechanisms can deliberately reconfigure themselves by rearranging the connectivity of components to meet the different requirements of tasks. Metamorphic and origami-derived mechanisms are two kinds of typical reconfigurable mechanisms, which have attracted increasing attention in the field of mechanisms since they were proposed. Improving the independent design level, innovation, and international competitive powers of reconfigurable mechanical products is important. Summarizing related significant innovation research and application achievements periodically will shed light on research directions and promote academic exchanges. This paper presents an overview of recent developments in innovation design of reconfigurable mechanisms in China, including metamorphic and origami mechanisms and their typical applications. The future development trends are analyzed and forecasted.

关键词: innovation design     reconfigurable mechanisms     metamorphic mechanisms     origami-derived mechanisms     development trends    

CROP DIVERSITY AND SUSTAINABLE AGRICULTURE: MECHANISMS, DESIGNS AND APPLICATIONS

《农业科学与工程前沿(英文)》 2021年 第8卷 第3期   页码 359-361 doi: 10.15302/J-FASE -2021417

摘要:

Intensive monoculture agriculture has contributed greatly to global food supply over many decades, but the excessive use of agricultural chemicals (fertilizers, herbicides and pesticides) and intensive cultivation systems has resulted in negative side effects, such as soil erosion, soil degradation, and non-point source pollution[1]. To many observers, agriculture looms as a major global threat to nature conservation and biodiversity. As noted in the Global Biodiversity Outlook 4[2], the drivers associated with food systems and agriculture account for around 70% and 50% of the projected losses by 2050 of terrestrial and freshwater biodiversity, respectively[3].

In addition, agricultural development and modernization of agriculture has led to a decline in the total number of plant species upon which humans depend for food[4]. Currently, fewer than 200 of some 6000 plant species grown for food contribute substantially to global food output, and only nine species account for 67% of total crop production[3]. The global crop diversity has declined in past decades.

Crop species diversity at a national scale was identified as one of the most important factors that stabilize grain production at a national level[5]. A group of long-term field experiments demonstrated that crop diversity also stabilizes temporal grain productivity at field level[6]. Therefore, maintaining crop diversity at both national and field levels is of considerable importance for food security at national and global scales.

Crop diversity includes temporal (crop rotation) and spatial diversity (e.g., intercropping, agroforestry, cultivar mixtures and cover crops) at field scale. Compared to intensive monocultures, diversified cropping systems provide additional options to support multiple ecosystem functions. For instance, crop diversity may increase above- and belowground biodiversity, improve yield stability, reduce pest and disease damage, reduce uses of chemicals, increase the efficiency of the use land, light water and nutrient resources, and enhance stress resilience in agricultural systems.

To highlight advances in research and use of crop diversity, from developing and developed countries, we have prepared this special issue on “Crop Diversity and Sustainable Agriculture” for Frontiers of Agricultural Sciences and Engineering, mainly focusing on intercropping.

Intercropping, growing at least two crops at the same time as a mixture, for example, in alternate rows or strips, is one effective pathway for increasing crop diversity at the field scale. Over recent decades, there have been substantial advances in terms of understanding of processes between intercropped species and applications in practice. There are 10 articles in this special issue including letters, opinions, review and research articles with contributions from Belgium, China, Denmark, France, Germany, Greece, Italy, the Netherlands, Spain, Switzerlands, UK, and Mexico etc.

The contributors are internationally-active scientists and agronomists contributing to intercropping research and extension. For example, Antoine Messean is coordinator of the EU H2020 Research project DiverIMPACTS “Diversification through rotation, intercropping, multiple cropping, promoted with actors and value chains towards sustainability”. Eric Justes is coordinator of the EU H2020 Research project ReMIX “Redesigning European cropping systems based on species mixtures”. Maria Finckh has worked on crop cultivar mixture and organic agriculture over many years. Henrik Hauggaard-Nielsen has outstanding expertise in intercropping research and applications, moving from detailed studies on species interactions in intercropping to working with farmers and other stakeholders to make intercropping work in practical farming. In addition to these established scientists, young scientists who have taken an interest in intercropping also contribute to the special issue, including Wen-Feng Cong, Yixiang Liu, Qi Wang, Hao Yang and others.

The first contribution to this special issue addresses how to design cropping systems to reach crop diversification, with Wen-Feng Cong and coworkers ( https://doi.org/10.15302/J-FASE-2021392) considering that it is necessary to optimize existing and/or design novel cropping systems based on farming practices and ecological principles, and to strengthen targeted ecosystem services to achieve identified objectives. In addition, the design should consider regional characteristics with the concurrent objectives of safe, nutritious food production and environmental protection.

The benefits of crop diversification have been demonstrated in many studies. Wen-Feng Cong and coworkers describe the benefits of crop diversification at three scales: field, farm, and landscape. Hao Yang and coauthors reviewed the multiple functions of intercropping. Intercropping enhances crop productivity and its stability, it promotes efficient use of resources and saves mineral fertilizer, controls pests and diseases of crops and reduces the use of pesticides. It mitigates climate change by sequestering carbon in soil, reduces non-point source pollution, and increases above- and belowground biodiversity of other taxa at field scale ( https://doi.org/10.15302/J-FASE-2021398).

Eric Justes and coworkers proposed the “4C” framework to help understand the role of species interactions in intercropping ( https://doi.org/10.15302/J-FASE-2021414). The four components are competition, complementary, cooperation (facilitation) and compensation, which work often simultaneously in intercropping. Hao Yang and coworkers used the concept of diversity effect from ecology to understand the contribution of complementarity and selection effects to enhanced productivity in intercropping. The complementarity effect consists of interspecific facilitation and niche differentiation between crop species, whereas the selection effect is mainly derived from competitive processes between species such that one species dominates the other ( https://doi.org/10.15302/J-FASE-2021398). Also, Luis Garcia-Barrios and Yanus A. Dechnik-Vazquez dissected the ecological concept of the complementarity and selection effects to develop a relative multicrop resistance index to analyze the relation between higher multicrop yield and land use efficiency and the different ecological causes of overyielding under two contrasting water stress regimes ( https://doi.org/10.15302/J-FASE-2021412).

Odette Denise Weedon and Maria Renate Finckh found that composite cross populations, with different disease susceptibilities of three winter wheat cultivars, were moderately resistant to brown rust and even to the newly emerged stripe rust races prevalent in Europe since 2011, but performance varied between standard and organic management contexts ( https://doi.org/10.15302/J-FASE-2021394).

Comparing the performance of intercrops and sole crops is critical to make a sound evaluation of the benefits of intercropping and assess interactions between species choice, intercrop design, intercrop management and factors related to the production situation and pedoclimatic context. Wopke van der Werf and coworkers review some of the metrics that could be used in the quantitative synthesis of literature data on intercropping ( https://doi.org/10.15302/J-FASE-2021413).

Interspecific interactions provide some of the advantages of intercropping, and can be divided into above- and belowground interactions. Aboveground interactions can include light and space competition, which is influenced by crop species traits. Root exudates are also important in interspecific interactions between intercropped or rotated species. Qi Wang and coworkers estimated the light interception of growth stage of maize-peanut intercropping and corresponding monocultures, and found that intercropping has higher light interception than monoculture, and increasing plant density did not further increase light interception of intercropping ( https://doi.org/10.15302/J-FASE-2021403). Yuxin Yang and coworkers reported that the root exudates of fennel (Foeniculum vulgare) can reduce infection of tobacco by Phytophthora nicotianae via inhibiting the motility and germination of the spores of the pathogen ( https://doi.org/10.15302/J-FASE-2021399).

Focusing on the application of intercropping, Wen-Feng Cong and coworkers formulated species recommendations for different regions of China for different crop diversity patterns and crop species combinations. These authors also suggested three steps for implementing crop diversification on the North China Plain. Although there are multiple benefits of crop diversification, its extension and application are hindered by various technical, organizational, and institutional barriers along value chains, especially in Europe. Based on the findings of the European Crop Diversification Cluster projects, Antoine Messéan and coworkers suggested that there needs to be more coordination and cooperation between agrifood system stakeholders, and establish multiactor networks, toward an agroecological transition of European agriculture ( https://doi.org/10.15302/J-FASE-2021406). In addition, Henrik Hauggaard-Nielsen and coworkers report the outcomes of a workshop for participatory research to overcome the barriers to enhanced coordination and networking between stakeholders ( https://doi.org/10.15302/J-FASE-2021416).

Intercropping, though highly effective in labor-intensive agriculture, may be difficult to implement in machine-intensive, large-scale modern agriculture because appropriate large equipment is not commercially available for planting and harvesting various crop mixtures grown with strip intercropping[6]. Thus, the appropriate machinery will need to be developed for further practical application in large-scale agriculture.

As the guest editors, we thank all the authors and reviewers for their great contributions to this special issue on “Crop Diversity and Sustainable Agriculture”. We also thank the FASE editorial team for their kind supports.

Special issue on “Molecular Sensors and Molecular Logic Gates”

Luling Wu , Tony D. James

《化学科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 1-3 doi: 10.1007/s11705-021-2134-y

Design of bio-oil additives via molecular signature descriptors using a multi-stage computer-aided molecular

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 168-182 doi: 10.1007/s11705-021-2056-8

摘要: Direct application of bio-oil from fast pyrolysis as a fuel has remained a challenge due to its undesirable attributes such as low heating value, high viscosity, high corrosiveness and storage instability. Solvent addition is a simple method for circumventing these disadvantages to allow further processing and storage. In this work, computer-aided molecular design tools were developed to design optimal solvents to upgrade bio-oil whilst having low environmental impact. Firstly, target solvent requirements were translated into measurable physical properties. As different property prediction models consist different levels of structural information, molecular signature descriptor was used as a common platform to formulate the design problem. Because of the differences in the required structural information of different property prediction models, signatures of different heights were needed in formulating the design problem. Due to the combinatorial nature of higher-order signatures, the complexity of a computer-aided molecular design problem increases with the height of signatures. Thus, a multi-stage framework was developed by developing consistency rules that restrict the number of higher-order signatures. Finally, phase stability analysis was conducted to evaluate the stability of the solvent-oil blend. As a result, optimal solvents that improve the solvent-oil blend properties while displaying low environmental impact were identified.

关键词: computer-aided molecular design     bio-oil additives     molecular signature descriptor    

Progress on molecular biomarkers and classification of malignant gliomas

null

《医学前沿(英文)》 2013年 第7卷 第2期   页码 150-156 doi: 10.1007/s11684-013-0267-1

摘要:

Gliomas are the most common primary intracranial tumors in adults. Anaplastic gliomas (WHO grade III) and glioblastomas (WHO grade IV) represent the major groups of malignant gliomas in the brain. Several diagnostic, predictive, and prognostic biomarkers for malignant gliomas have been reported over the last few decades, and these markers have made great contributions to the accuracy of diagnosis, therapeutic decision making, and prognosis of patients. However, heterogeneity in patient outcomes may still be observed, which highlights the insufficiency of a classification system based purely on histopathology. Great efforts have been made to incorporate new information about the molecular landscape of gliomas into novel classifications that may potentially guide treatment. In this review, we summarize three distinctive biomarkers, three most commonly altered pathways, and three classifications based on microarray data in malignant gliomas.

关键词: malignant glioma     molecular biomarker     IDH1     MGMT     molecular classification    

标题 作者 时间 类型 操作

Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies

null

期刊论文

Molecular mechanisms of fatty liver in obesity

null

期刊论文

Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganeseoxide batteries from reactive force field (ReaxFF) based molecular dynamics

Sahithya REDDIVARI, Christian LASTOSKIE, Ruofei WU, Junliang ZHANG

期刊论文

Molecular mechanisms of leukemia-associated protein degradation

Ying-Li WU, Guo-Qiang CHEN, Hu-Chen ZHOU,

期刊论文

Molecular mechanisms and therapeutic strategies of vulnerable atherosclerotic plaques

Wen-Qiang CHEN MD, Yun ZHANG MD, PhD, FACC,

期刊论文

Influences and mechanisms of nanofullerene on the horizontal transfer of plasmid-encoded antibiotic resistance

Qingkun Ji, Caihong Zhang, Dan Li

期刊论文

Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms

null

期刊论文

纳米多孔介质中的流体流动

Weiyao Zhu,Bin Pan,Zhen Chen,Wengang Bu,Qipeng Ma,Kai Liu,Ming Yue

期刊论文

FOOD SYSTEMS TRANSFORMATION: CONCEPTS, MECHANISMS AND PRACTICES

期刊论文

Gripping mechanisms in current wood harvesting machines

D. GOUBET, J. C. FAUROUX, G. GOGU

期刊论文

Recent development on innovation design of reconfigurable mechanisms in China

Wuxiang ZHANG, Shengnan LU, Xilun DING

期刊论文

CROP DIVERSITY AND SUSTAINABLE AGRICULTURE: MECHANISMS, DESIGNS AND APPLICATIONS

期刊论文

Special issue on “Molecular Sensors and Molecular Logic Gates”

Luling Wu , Tony D. James

期刊论文

Design of bio-oil additives via molecular signature descriptors using a multi-stage computer-aided molecular

期刊论文

Progress on molecular biomarkers and classification of malignant gliomas

null

期刊论文